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Abstract

Causal opacity denotes the difficulty in understanding the “hidden” causal structure
underlying a deep neural network’s (DNN) reasoning. This leads to the inability to
rely on and verify state-of-the-art DNN-based systems especially in high-stakes
scenarios. For this reason, causal opacity represents a key open challenge at the
intersection of deep learning, interpretability, and causality. This work addresses
this gap by introducing Causal Concept Embedding Models (Causal CEMs), a class
of interpretable models whose decision-making process is causally transparent by
design. The results of our experiments show that Causal CEMs can: (i) match the
generalization performance of causally-opaque models, (ii) support the analysis of
interventional and counterfactual scenarios, thereby improving the model’s causal
interpretability and supporting the effective verification of its reliability and fair-
ness, and (iii) enable human-in-the-loop corrections to mispredicted intermediate
reasoning steps, boosting not just downstream accuracy after corrections but also
accuracy of the explanation provided for a specific instance.

1 Introduction

Deep Learning (DL) models have a pervasive impact on many areas of contemporary research
and society [1]. Despite this success, there is growing concern about the widespread real-world
application of DL, particularly in sensitive domains [2]. These concerns are partly due to the lack of
causal explainability of these models, which undermine their robustness, fairness and generalisability
[3]. Causal explainability, in particular, is a multi-faced issue, which includes a variety of different,
albeit related, problems [4]. One such problem is that of causal discovery and concerns the possibility
of using a model to detect and understand the causal mechanisms of the data generating process [5,
6, 3, 7] (see Figure 1a). An equally important problem is that of causal opacity, which denotes the
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Figure 1: (a) Causal explainability has two distinct dimensions: causal discovery, where we
aim to identify and understand the causal mechanisms underlying a data-generating process, and
causal opacity, where we aim to understand the causal structure of a model’s inference to verify
its robustness, generalisability, and fairness. (b) Standard DL models are black boxes in the sense
that the causal structure of their mapping from raw input features (e.g., pixels of an image) to the
target remains opaque. (c) In Concept Bottleneck Models (CBM), high-level human-interpretable
concepts are first extracted through an encoder g and then used to predict the target. Although CBMs
are semantically interpretable, the causal structure of the model’s inference assumes a straightforward
causal structure where concepts are causally independent and are all direct causes of the target. (d)
In Causal Concept Embedding Models (Causal CEMs), both the concepts’ semantics and the
inference’s causal structure are transparent and interpretable.

difficulty of users to grasp and understand the “hidden” causal structure characterising a model’s
inference and behaviour (see Figure 1b).

Causal opacity can be better understood in the light of Pearl’s framework of causality [8, 6], which
measures an agent’s causal understanding in terms of their ability to answer what-if type of questions,
and specifically interventional and counterfactual questions. In this regard, causal opacity depends
on the ability of users to answer interventional and counterfactual questions regarding the structure
of a model’s inference (e.g., “what happens if I fix the feature age to a value greater than 50?”).
This capacity is vital for assessing a model’s reliability and robustness and plays a central role in
establishing its fairness, especially within the popular framework of counterfactual fairness [9]. For
instance, in a loan recommendation system, ensuring fairness might involve verifying that sensitive
demographic attributes, like gender or ethnicity, have no causal influence on model’s decision-making
process. This task can be solved by checking that such predictions are robust (i.e., do not vary) under
interventional and counterfactual adjustments. This ultimately requires answering interventional and
counterfactual questions such as “will the decision change if I vary the applicant’s ethnicity?”.

To address causal opacity, the field of eXplainable AI (XAI) has developed a variety of techniques
aimed at explaining the causal mechanisms underlying a model’s predictions [10–12]. Among the
most common methods are feature attribution techniques, where an explanation aims to measure the
causal relevance of each feature (or latent factor) for a model’s outcome [13–20]. Although these
techniques are promising, their focus on “raw” input features limits their applicability, especially
on unstructured data (e.g., images) whose input features denote low-level attributes (e.g., pixels)
lacking an understandable and contextually relevant meaning. For this reason, many works stress
that good causal explanations should be concept-based [21], i.e., they should rely on the “high-
level” features, or “concepts”, that a model infers from raw data when making predictions [3, 22].
State-of-the-art concept-based models—such as Concept Bottleneck Models [23] and concept-based
counterfactuals [24, 25]—partially address this issue while being prone to a key limitation : they
only capture direct counterfactual dependence [26], a weak form of causal dependence that assumes
all concepts to be causally mutually independent and directly related to the target prediction (see
Figure 1c). This oversimplifies an inference’s causal structure, which typically encompasses a
complex, dense network of causal dependencies among various concepts. As a result, the problem of
causal opacity still represents a key open challenge at the intersection of DL, causality, and XAI that
currently limits the explainability, reliability, and verifiability of modern DL systems.

To bridge this gap, we introduce Causal Concept Embedding Models (Causal CEMs, see Figure 1d),
an interpretable concept-based architecture delivering inferences whose causal structure is transparent
by design. The results of our experiments show that Causal CEMs can: (i) match the generalisation
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performance of state-of-the-art causally-opaque models, (ii) support the analysis of interventional and
counterfactual scenarios, thereby improving the model’s causal interpretability and supporting the
effective verification of its reliability and fairness, and (iii) enable human-in-the-loop corrections of
mispredicted intermediate reasoning steps, boosting not just downstream accuracy after corrections
but also accuracy of the explanation provided for a specific instance.

2 Background

Causal Models A causal model (CM) is a mathematical representation of the mechanisms (rules,
laws) that explain how different variables of a given target-system causally influence each other. In
computer science and statistics, the standard framework for causal modelling is that of Structural
Causal Models (SCM) proposed by Pearl [8]. Formally, an SCM M is a triplet (U ,V,F) where: U
is a set of exogenous variables representing latent factors with a causal influence on the modelled
target-system; V is a set of endogenous variables representing observable and measurable variables;
F is a set of functions (or structural equations) describing the causal mechanisms, which determine
the values of each endogenous variable vi ∈ V by computing vi = fi(ui, pa(vi)), where ui ∈ U and
pa(vi) are, respectively, the set of exogenous and endogenous variables causally affecting vi ∈ V .
Every SCM can be associated with a directed acyclic graph (DAG) whose nodes represent variables
and edges represent direct causal connections. Interventions can be modelled in SCMs through the
do-operator [27, 8] . This operator induces a modification on the model’s structure by changing
the value of an endogenous variable which is fixed to a value κ ∈ R by external means, effectively
breaking its original causal dependencies within the model. Formally, applying do(vi = κ) to a
modelM results in a new modelMvi=κ which is identical toM except that the equation for vi is
replaced with a constant value κ, removing all arrows into vi in the model annexed DAG.

Concept-based models Concept-based models [28–34] are interpretable architectures that explain
their predictions using high-level units of information (i.e., “concepts”). Most of these approaches
can be formulated as a Concept Bottleneck Model (CBM) [23], an architecture where predictions are
made by composing (i) a concept encoder g : X → C that maps samples x ∈ X ⊆ Rd (e.g., pixels)
to a set of r concepts c ∈ C ⊆ {0, 1}r (e.g., “red”, “round”), and (ii) a task predictor f : C → Y
that maps predicted concepts to a set of l tasks y ∈ Y ⊆ {0, 1}l (e.g., labels “apple” or “tomato”).
Each component gi and fj denotes the truth degree of the i-th concept and j-th task, respectively.
Usually, concept-based models represent a concept ci using its predicted truth degree ĉi ∈ [0, 1].
This representation, however, might significantly degrade task accuracy when the provided concepts
are incomplete [35, 36]. To overcome this issue, Concept Embedding Models (CEMs) [36] use
high-dimensional embeddings ĉi ∈ Rz to represent concepts alongside their truth degrees ĉi ∈ [0, 1].

3 Causal Concept Embedding Models

To address the causal opacity of DL systems, we need a model that can answer both interventional and
counterfactual causal queries. In order to enable human verification and control, the causal structure
of the model’s inference should be based on high-level interpretable concepts (e.g., colours, shapes)
as low-level attributes do not provide a controllable semantics (a specific pixel lacks meaningful
semantics when it comes to causal queries) [21]. In the absence of causal priors, we also need the
model to learn causal dependencies among high-level features from available data without making
strong assumptions such as direct counterfactual dependence [26]. Finally, the model should not
sacrifice predictive generalisation performance in exchange for causal interpretability. To this end, we
introduce Causal Concept Embedding Models (Causal CEMs, Figure 1d), a class of concept-based
architectures delivering causally transparent and robust inferences. In this section, we present the
Causal CEMs blueprint (Section 3.1) and training process (Section 3.2).

3.1 Blueprint

In the absence of causal priors, Causal CEMs need to learn causal dependencies between high-level
features that lead to the model becoming more effective in solving its designated task. As a result, we
can formally describe Causal CEMs using a generalised probabilistic graphical model (PGM) that
extends a traditional PGM by allowing cycles:
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Definition 3.1 (Causal Concept Embedding Model). Given an observed input feature x, a set of
k ∈ N latent factors ui ∈ U each associated with a high level interpretable variable vi ∈ V , a Causal
Concept Embedding Model is the generalised probabilistic graphical model (PGM) G = (N , E) with
nodesN = {x}∪U∪V and edges E =

{
(x, ui) | ui ∈ U

}
∪
{
(ui, vi) | i ∈ {1, · · · , k}

}
∪{(vi, vj) |

vi, vj ∈ V, vi ̸= vj} which represents the joint conditional distribution p(v, u | x):

x

u1

u2

. . .

uk

v1

v2

. . .

vk (1)

The cyclical nature of Causal CEMs comes from the necessity to model all possible dependencies
among variables vi. Notice that the model is uniquely identified by the set of all conditional probability
distributions corresponding to the arrows in the graph. Unfortunately, in generalised PGMs, the model
does not easily factorise in terms of such distributions due to the cycles. To deal with cycles while
maintaining the independencies induced by the graph structure, we can use an unfolding semantics
for cyclical PGMs [37]. This semantics is based on the choice of a “cutset” i.e., a specific set of nodes
Q ⊆ N in the PGM such that every cycle in the PGM contains at least one node in Q. Intuitively, by
unfolding the nodes in the cutset, all cycles are broken leaving us with a standard acyclical PGM.
The consistency between the semantics of the original cyclical PGM and the unfolded acyclical PGM
is only valid in the limit of infinite unfolding [37]. However, when computing the likelihood of an
observed complete set of variables vi ∈ V , modelling one single unfolding (i.e., a single transition)
suffices for learning the conditional probability distributions among the variables in V , as all the
variables become conditionally independent on each other. As a result, we can define a Dissected
Causal CEM as the one-step unfolding of the Causal CEM in Definition 3.1:
Definition 3.2 (Dissected Causal CEM). Given a Causal CEM, let V ′ = V be the cutset. Then, the
dissected Causal CEM G = (N ∪ V ′, EV′) is an acyclic PGM obtained by extending the generalised
PGM by (i) adding a copy of all cutset nodes V ′ = {vi | vi ∈ V}, (ii) adding a new set of edges
directed from parents of cutset’s nodes to the generated copies V ′ i.e., EV′ = {(a, b) | (a, b) ∈ E , b ∈
V ′} ∪ {(a, b) | (a, b) ∈ E , b /∈ V ′}, and (iii) defining an initial probability distribution for the new
copies p(v′|u) given the latent variables. The resulting PGM, factorised as p(v, v′, u | x) = p(v |
v′, u)p(v′ | u)p(u | x), is:

x

u1

u2

. . .

uk

v′1

v′2

. . .

v′k

v1

v2

. . .

vk

(2)
Remark 3.3. The distribution p(vi | paV′(vi), ui) can be associated with a structural causal model
M = ({ui},V ′ ∪ {vi}, {fi}) with causal mechanism vi = fi(ui, paV′(vi)), where ui ∈ U is
an exogenous variable representing latent, uninterpretable information (e.g., noise), vi ∈ V is an
endogenous variable representing interpretable, symbolic information, and fi : U × V → V is a
function describing the causal mechanism that determines the value of vi given its parents paV′(vi).
Such dependencies are captured by a graph G = (V ∪ V ′, {(a, b) | a ∈ V ′, b ∈ V}), representing all
direct causal dependencies between endogenous variables.
Remark 3.4. The structure of dissected Causal CEMs resembles the structure of CBMs as the
prediction of each vi can be traced back to v′j , ∀j ̸= i. In this sense, endogenous copies in a Causal
CEM play the role of “explaining variables”, akin to a CBM’s concepts. In contrast, endogenous
variables play the role of “explained variables”, akin to a CBM’s tasks.

We can interpret the factors of a dissected Causal CEM as follows: p(u | x) is the exogenous
encoder, i.e., a deterministic distribution that is parametrised by a neural network ζ : X → U . In
CBMs, this function represents the input encoder. The exogenous encoder ζ generates exogenous
variables ui ∈ U mapping raw input features x (e.g., an image’s pixels) to latent embeddings
ûi ∈ Rq, q ∈ N. In practice, this process mirrors the generation of context vectors in Concept
Embedding Models [36]. First, the encoder ψ : X → H maps raw features to a latent code h ∈ H .
Then, a pair of neural networks {ϕ+i , ϕ

−
i } map the latent code into two different embeddings whose

4



concatenation [ϕ+i (h), ϕ
−
i (h)]

T corresponds to the exogenous variable Ui of the i-th concept:

(exogenous variables) ûi = ζ(x) = [ϕ+i (ψ(x)), ϕ
−
i (ψ(x))]

T . (3)

In contrast, p(v′ | u) is the copies predictor. This is the product of k independent Bernoulli
distributions whose logits are parameterised by a neural network s : U → V . In CBMs, the
composition of the exogenous encoder and the concept predictor is often called concept encoder
g = ζ ◦ s. In causal methods, this function represents a (supervised) causal feature learner [7]. The
copies predictor s generates endogenous copies v′i ∈ V from latent embeddings ûi. This is obtained
using a neural network classifier s : U → V as a scoring function as in [36]:

(endogenous copies) v̂′i = s(ûi) = σ
(
Wsûi + bs

)
(4)

Finally, p(vi | paV′(vi), ui) is the endogenous predictor. This distribution is the product of k
independent Bernoulli distributions whose logits are parameterised by a neural network f : V k×U →
V . The input to this function paV′(vi) (representing direct causal dependencies) is weighted by a
learnable adjacency matrix M ⊆ Rk×k, where each learnable weight mij models the strength of
the dependency of vi from its parents v′j . In CBMs this function is called a task predictor [23] and
intuitively represents the analogous of the structural equations that model causal mechanisms in
SCMs [7]. The endogenous predictor generates the endogenous variables v̂i ∈ V by considering
exogenous variables ûj and copies v̂′j with j ̸= i. First, the function ω : V × U → Rz generates
endogenous embeddings v̂′

j using exogenous variables ûj and copies v̂′j , following [36]. Then, all
endogenous embeddings are weighted by the strength of the dependency mij and aggregated using a
deepset-like neural network fi : Rz×k → [0, 1] which maps endogenous embeddings to endogenous
predictions:

(endogenous embeddings) v̂′
j = ω(v̂′j , ûj) = v̂′jϕ

+
j (ψ(x)) + (1− v̂′j)ϕ−j (ψ(x)) (5)

(endogenous variables) v̂i = fi
(
{mijv̂

′
j}j∈{1,...,k}

)
. (6)

In order to learn explicit structural equations, existing logic-based aggregation methods can be used
from the concept literature [38, 33]. App. A describes in more detail their adaptation in Causal CEM.

3.2 Training Causal CEMs
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Figure 2: Unfolded Causal CEM’s en-
dogenous predictor.

Learning causal structures Causal CEMs initialise the
weights of causal dependencies mij based on the condi-
tional entropy between labels vi and vj , as it can be used
to represent asymmetric concept relationship (for other ini-
tialisation strategies, see App. A). These weights are then
fine-tuned through an end-to-end learning process within
the Causal CEM framework following common causal
priors, where causal graphs are assumed to be sparse, di-
rected, and acyclic (forming a Directed Acyclic Graph or
DAG). We introduce a parameter γ ∈ R to eliminate less
significant dependencies and a loss function, as described
by Yang et al. [39], to enforce the sparsity and acyclicity
of the causal graph, ensuring that the adjacency matrix A effectively represents a DAG:

(initialization) mij = −
∑

a∈{0,1}

∑
b∈{0,1}

p(vi = a, vj = b) log p(vi = a | vj = b) (7)

(sparsity) A =M · 1M≥γ (8)

(acyclicity) L2(A) = Tr
((

I +
β

k
A ·A

)k
)
− k (9)

where k is the number of endogenous, 1 an indicator function, and β > 0 a scaling hyperparameter.
Remark 3.5 (Unfolding Causal CEMs with directed message passing). Notice how learning a DAG
together with Definition 3.2 allows to unfold a Causal CEM’s endogenous predictor applying a
directed message passing on the associated structural causal modelM, ensuring that the values of
endogenous variables are derived solely from the nodes that are their ancestors on the causal graph
(see Figure 2). As a first step, we compute the exogenous variables for all nodes. We then predict the
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values of endogenous variables in root nodes in the learned DAG from their corresponding exogenous
variables. Following this, we can generate the endogenous embeddings for root nodes and aggregate
endogenous embeddings to compute the value of endogenous variables of each child node. We repeat
this process until all leaf nodes of the graph are reached. We can obtain this by replacing in Eq. 5 the
endogenous copies v̂′j with the parents of the endogenous variable vi:

(unfolding) v̂i = fi ({aijω(v̂j , ûj)}) , ∀i, j ∈ V (10)

Note that this causal unrolling guarantees two key properties (see Figure 3a): (1) modifying the value
of a cause (parent node) will impact the effect (child node) in our model, (2) conversely, intervening
upon an effect does not alter the cause. This is because, in our model, information flows sequentially
following the graph, mirroring the fundamental nature of causal effects. Consequently, this layer
not only facilitates the computation of task predictions but also enables the exploration of causal
relationships through do-interventions and counterfactual analysis.

Optimisation problem We can now state the general learning objective for Causal CEMs. Given
(1) a set of entities represented by their feature vectors x ∈ X ⊆ X (i.e. the input) and (2) a set of
annotations for each exogenous variable v ∈ V ⊆ V (i.e. the labels), we wish to find functions ζ, s,
f , together with the adjacency matrix A, that maximise the log-likelihood of v, v′, while observing x
(or equivalently u = ζ(x)):

L =

endogenous copies’ prediction︷ ︸︸ ︷
Eu,v′∼p(u,v′)[− log p(v′ | u)] +λ1

endogenous variables’ prediction︷ ︸︸ ︷
Ev∼p(v|do(v′=v),u)[− log p(v | do(v′ = v), u)] +λ2

graph priors︷ ︸︸ ︷
L2(A)

where λ1,2 are hyperparameters balancing optimisation objectives. Notice that we use the do-operator
replacing v̂′j with labels vj to minimise leakage and provide better gradients to the endogenous
predictor f . This enables Causal CEMs to be aware of do-operations during training, thus making
the model effective in responding to do-interventions once deployed.

4 Causal reasoning and verification with Causal CEM

As traditional CBMs, Causal CEMs enable ground-truth intervention that allow domain experts to fix
mispredicted concept labels at test time. This notion of interventions must not be confused with the
notion of intervention usually discussed in causality literature and modelled by Pearl’s do-operator.
For the latter, here we use the term do-intervention. However, in the proposed architecture, the
ground-truth interventions have a potentially higher impact as each intervention has a downstream
effect on all descendant nodes in the causal graph. In contrast, a concept intervention in a traditional
CBM has only an effect on 1-hop nodes representing the downstream task. Moreover, Causal CEMs
enable sound causal inference and verification via do-interventions and counterfactual analysis.

Ground-truth interventions Causal CEMs support “ground-truth interventions” (see Figure 3b).
Ground-truth interventions are one of the core motivations behind CBMs [23]. Through ground-truth
interventions, concept bottleneck models allow experts to improve a CBM’s task performance by
rectifying mispredicted concepts at test time, thus significantly improving task performance within a
human-in-the-loop setting. In Causal CEMs, however, ground-truth interventions have a potential
impact on all endogenous variables descendant of an intervened node, which may include not only
nodes corresponding to downstream tasks but also nodes corresponding to a CBM’s intermediate
concepts. This enables a single concept ground-truth intervention to potentially improve the prediction
of intermediate concepts as well as downstream tasks.

Causal reasoning and verification: do-interventions, counterfactuals, and blocking Causal
CEMs can answer interventional and counterfactual queries related to the model’s decision-making
process using the do-operator on the unfolded SCM. Do-interventions enable manipulation of a
Causal CEM’s decision-making process by changing the value of a specific endogenous variable and
observing how it affects other variables’ distributions (see Figure 3c). In Causal CEMs, the effect
of the do-intervention is analysed through the interventional distribution, denoted as p(vi|do(vj =
κ), pa(vi)), which describes the distribution of the outcome variable vi after the intervention do(vj =
κ) has been performed. In particular, in Causal CEMs, the do-operation fixes the value of the
intervened variable vi to a fixed constant κ ∈ {0, 1} and removes all causal dependencies from parent
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Figure 3: (a) A 5-variable causal graph. (b) A ground-truth intervention fixes the error of the
prediction v̂3 to the ground-truth label v3. (c) A do-intervention sets the value of the second variable
to a constant i.e., v2 = 0. The intervention impacts v2’s effects i.e., v3,5, but does not alter v2’s causes
i.e., v1. This operation can override ground-truth interventions. (c) A do-intervention on v3 blocks
the causal effects of v2 on v5. As a result, intervening on v2 cannot alter v5 anymore.

variables by zeroing all values of the i-th column of the adjacency matrix:

do(vj = κ) :=

{
vj := κ, κ ∈ {0, 1}
a[:,j] = 0, (implies that: pa(vj) = ∅)

(11)

Causal CEMs also enable to answer counterfactual queries such as “What would the value of the
i-th variable have been, had the j-th variable been κ, given that we observed vi and vj?”. Answering
these queries involves three steps [27]: 1) Abduction: Infer a realisation of exogenous variables that is
consistent with the observed vi and vj in the actual causal model. 2) Action: Modify the architecture
of the causal CEMM intoMvj=κ by replacing the structural equation for vj with κ, to simulate the
intervention. 3) Prediction: Compute the value of vi in the modified modelMκ, representing the
counterfactual outcome:

(abduction) ûi = ζ(x) (12)

(action) do(vj = κ) :=

{
vj := κ

a[:,j] = 0
(13)

(prediction) v̂i = fi ({ainω(v̂n, ûn)}) , ∀i, n ∈ V (14)

This formalism allows us to not only estimate the effects of hypothetical interventions but also to
explore the implications of alternative scenarios on individual outcomes, providing a powerful tool
for analysing the model’s decision-making based on interpretable causal structures.

Model verification and blocking Causal analysis enables the verification of properties of Causal
CEMs before deployment. For instance, using only the learnt causal graph, it is possible to prove
that an endogenous variable vi is independent of the variable vj by verifying that vj is not among
the ancestors of vi. Another form of formal verification, which we call “blocking”, employs the
do-intervention (see Figure 3d). Blocking allows one to formally verify the independence of a pair of
variables given a sequence of do-operations. Given a pair of variables vj and vi such that vj is an
ancestor of vi, we perform a blocking verification as follows: 1) Block: perform a do-intervention on
all child nodes of vj , 2) Verify: perform a do-operation on vj itself and observe the impact on vi. We
can easily verify that the first step makes vj and vi completely independent by observing that the
do-operation on vj no longer alters the distribution of vj .

5 Experiments

Our experiments aim to answer the following questions:

• Concept-based performance and interpretability: Can Causal CEMs match the generali-
sation performance of equivalent black-box models and existing CBMs? Can Causal CEMs
enable more effective ground-truth interventions w.r.t. existing CBMs?

• Causal Interpretability: Are Causal CEMs causally interpretable? Can Causal CEMs
effectively block the causal effect of two causally related endogenous variables?

To answer these questions, we use three datasets: (i) Checkmark, a synthetic dataset composed of four
endogenous variables; (ii) dSprites, where endogenous variables correspond to object types together
with their position, colour, and shape; and (iii) CelebA, a facial recognition dataset where endogenous
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variables represent facial attributes. Using these datasets, we compare the proposed approach with
a black box baseline and state-of-the-art concept-based architectures: Concept Bottleneck Models
(CBM) [23], and Concept Embedding Models (CEM) [36]. We also compare a version of the
proposed method (Causal CEM) where the causal graph is learnt end-to-end w.r.t. with a version
(Causal CEM+CD) where the causal graph is extracted from ground-truth labels using a causal
discovery algorithm [40]. We provide further details on our experimental setup and baselines in
App. B.

A comprehensive set of experiments is detailed in App. C, where the experiments presented in this
section for a subset of the datasets are extended to include all datasets.

5.1 Key findings

Table 1: Label accuracy (↑) is computed on all
endogenous variables (concepts and task).

CHECKMARK DSPRITES CELEBA
Black box 90.15±1.30 99.53±0.05 79.55±0.14

CBM 90.34±0.55 99.55±0.07 79.00±0.18

CEM 89.09±1.98 99.48±0.07 79.17±0.26

Causal CEM+CD 89.43±0.93 99.40±0.15 78.42±0.42

Causal CEM 88.24±1.30 99.44±0.11 78.23±0.45

Causal CEMs match the performance of
causally opaque models. (Table 1) Causal
CEMs demonstrate robust generalisation across
all datasets, yielding a predictive perfor-
mance close to that of black-box architec-
tures with an equivalent capacity. Causal
CEMs using a pre-trained causal graph (Causal
CEM+CD) tend to have slightly better la-
bel accuracy with respect to Causal CEMs
where the causal graph is learned end-to-end (Causal CEM). Causal CEMs’s low vari-
ance suggests a consistent robustness on weight initializations over multiple training runs.
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Figure 4: Impact of ground-truth inter-
ventions on non-intervened nodes (↑).

Ground-truth interventions on Causal CEMs improve
both concept and task accuracy as opposed to CBMs
(Figure 4) In Causal CEM, the causal graph induces a
natural strategy for ground-truth interventions. Indeed, the
causal graph narrows down the set of variables to intervene
upon: for any given node, we can just fix mispredicted la-
bels of the node’s ancestors as intervening on other nodes
will not have any impact. This property significantly de-
creases the required number of interventions to achieve a
desired outcome (e.g., to increase a downstream task accu-
racy), as shown in App. C. Another advantage of Causal
CEM consists in the hierarchical nature of inference which
allows ground-truth interventions to impact all endogenous
variables descendant of an intervened node. In particular,
ground-truth interventions may affect not only nodes cor-
responding to downstream tasks (as in CBM and CEM),
but also nodes corresponding to a CBM’s intermediate
concepts. We experimentally verify this property and its
impact by calculating—for nodes that were not intervened upon (including both concepts and tasks)—
the change in accuracy before and after ground-truth interventions were applied on their ancestors.
Our results (Figure 4) show that Causal CEM improves nodes accuracy by ∼ 15 percentage points
after only 7 ground-truth interventions on CelebA, while CBM and CEM node accuracy remains
almost unchanged. Causal CEM’s advantage increases with the number of concepts and connections,
as a single intervention can impact a higher number of nodes in the causal graph. CBM and CEM,
instead, achieve a similar performance only after intervening on all concepts as their architecture
assumes all concepts to be mutually independent.

Causal CEMs’ endogenous predictors are causally interpretable (Figure 5) In Causal CEM
the decision-making process is causally interpretable and can be analysed by visualising the
learnt causal graph and structural equations as in a structural causal model, as shown in Fig-
ure 5 for CelebA. The image shows how Causal CEM exploited known biases in CelebA to
infer facial attributes. For instance, Causal CEM predicts the attribute “wearing lipstick” di-
rectly from the attribute “attractive” and indirectly from attributes such as “smiling” or “high
cheek”, all attributes that are known to be strongly correlated with each other in CelebA [41, 42].

8



Smiling High Cheek

Heavy Makeup

Attractive

Wearing Lipstick

0.0

1.0

PN
S

Figure 5: Portion of the learnt causal
graph and structural equations in CelebA.
A node’s colour in the causal graph is
proportional to the probability of neces-
sity and sufficiency w.r.t. the node v5.

We can also quantify the strength of the causal depen-
dency between two nodes by computing the probability
of necessity and sufficiency (PNS) [43]. In the figure,
we represent the PNS w.r.t. the leaf node by colouring
each node with a different shade of orange. This shows
how, for Causal CEM, the attribute “heavy makeup” has
the strongest impact on the leaf node. This high degree
of causal transparency allows users to interpret Causal
CEM’s inference and can be eventually exploited to iden-
tify potential biases, thereby supporting the assessment of
the model’s counterfactual fairness. As a result, users can
intervene directly on the causal structure of the decision-
making process and remove biases using do-interventions,
as shown in the next paragraph.

Table 2: Residual Concept Causal Effect (↓) be-
tween causally-related variables having blocked
all paths between the two variables with do-
interventions on the causal graph. The optimal
value is zero corresponding to perfect causal in-
dependence. Values above 100% mean that the
causal effect increased instead of decreasing.

CHECKMARK DSPRITES CELEBA
Black box N/A N/A N/A
CBM 97.99±5.64 100.00±0.70 97.84±2.13

CEM 102.58±12.95 100.00±4.62 106.00±0.50

Causal CEM+CD 0.00±0.00 0.00±0.00 0.00±0.00

Causal CEM 0.00±0.00 0.00±0.00 0.00±0.00

Causal CEMs can make two causally-related
variables causally independent by blocking
all paths between these variables (Table 2)
The causal transparency of the proposed ap-
proach allows users to modify the model’s
decision-making process (e.g., to de-bias the
model’s inference) by using do-interventions.
In particular, we can make two causally-related
variables i and j causally independent by block-
ing all paths between the cause i and the effect
j. We experimentally verify this property and
its impact by computing the Residual Concept
Causal Effect i.e., the ratio between the Concept
Causal Effect (CaCE) [44] obtained after and
before blocking. The optimal value of this metric is zero, corresponding to perfect causal indepen-
dence between i and j (i.e., the optimal value for a de-biasing operation). The results show that,
in Causal CEMs, blocking a variable in the causal graph always yields a perfect Residual Concept
Causal Effect of zero across all datasets. In contrast, applying the same procedure in CBMs leads
only to a negligible reduction in the average causal effect to 3 percentage points. CEMs not only fail
to reduce the causal effect to zero but, in some cases, even increase the causal influence. These results
underscore how Causal CEMs transparency enable users to manipulate the model’s decision-making
process to achieve desired outcomes, as opposed to existing CBMs.

6 Discussion

Related works Causal CEMs present substantial advantages compared to the state of the art.
Compared to most causal feature-attribution methods (e.g., [13]), Causal CEMs focus on high-
level human interpretable concepts. Causal CEMs differ from existing CBMs in their approach
to intervention and causal relationships. The causal structure of the inferences that Causal CEMs
deliver does not subsume weak forms of causal dependencies as in existing CBMs, where concepts
are all direct causes of the target and causally independent of each other. This way, Causal CEMs
enable human-in-the-loop corrections to mispredicted intermediate reasoning steps, boosting not just
downstream accuracy after corrections but also the accuracy of the explanation provided for a specific
instance. Closest to Causal CEMs in concept usage are post-hoc causal concept-based explainability
techniques, like DiConStruct [22] and conceptual counterfactual explanations [25]. These methods
build surrogate causal models to emulate a target black box model’s predictive behavior. However,
as Rudin [45] notes, convergence in predictive behavior does not ensure structural similarity in
decision-making processes, making surrogate models as explanatory proxies questionable. Causally
interpretable by-design architectures, such as Causal CEMs, do not suffer from this issue.

Limitations and future works Our method’s limitations are mainly derived from limitations
inherent to CBMs and causal reasoning. The quality of learnt causal graphs mainly depends on the
quality of the dataset and its annotations. Missing and noisy labels might lead to suboptimal graphs.

9



Similarly to generalised PGMs, Causal CEMs can be easily unfolded when the final graph is acyclic.
Variables in cycles can still be inferred, but require special unfolding techniques which might be
explored in future works. Finally, a Causal CEM’s learnt graph does not necessarily represent the
causal mechanisms of the data-generating process, but rather that of the model’s inference. This
makes our models suitable to be verified and controlled but not necessarily to understand their training
data’s distribution.

Conclusion and impact Causal opacity represents a key open challenge at the intersection of
deep learning, interpretability, and causality. Causal CEMs address this challenge by employing
an architecture which makes the decision-making process causally transparent by design. This
makes Causal CEMs reliable and verifiable compared to both usual DL architectures and standard
(non-causal) CBMs. The results of our experiments show that Causal CEMs support the analysis of
interventional and counterfactual scenarios—thereby improving the model’s causal interpretability
and supporting the effective verification of its reliability and fairness—and enable human-in-the-loop
corrections to mispredicted intermediate reasoning steps, boosting not just downstream accuracy
after corrections, but also accuracy of the explanation provided for a specific instance. As a result,
advancing this research line could significantly improve the reliability and verifiability of concept-
based deep learning models, thus supporting their deployment in real-world applications.
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A Architecture

Initialization of adjacency matrix Causal CEM provides versatile initialisation options for the
adjacency matrix A, tailored to specific scenarios. In certain instances, weights can be derived from
domain expertise or provided along with training data and labels. Without such information, weights
can be directly inferred from training labels through causal structural learning algorithms [7] as
a preliminary step. These approaches guide the model towards a predetermined decision-making
pathway. Alternatively, weights can be learnt concurrently during the Causal CEM training phase, as
outlined in Section 3.2. These weights may be initialised either randomly or based on the conditional
entropy between labels, providing a better starting point. Additionally, a hybrid approach is feasible,
where certain elements in A are fixed while others remain trainable. For instance, a causal structural
learning algorithm might yield a Partial Ancestral Graph (PAG) with undirected edges, allowing for
the definition of directed edges and learning the direction for others to avoid cycle formation.

Causal mechanisms In Causal CEM, the function fi corresponds to a causal mechanism in a
SCM. Such mechanisms are typically formalized via structural equations. For instance, linear models
are a common choice for label predictors in Concept Bottleneck Models [23] where endogenous
embeddings are aggregated using a permutation invariant aggregator function ⊕ (such as the element-
wise maximum, or sum):

v̂i = σ

Wi

⊕
j∈{1,...,k}

mijv̂j + bi

 (15)

However, other options are also available to increase the expressiveness and interpretability of
the decision-making process, such as Deep Concept Reasoning [33] class predictors, which build
logic-based formulae to obtain class label predictions using endogenous embeddings:

v̂i ←
∨

x∈Xtrain

∧
j∈{1,...,k}

lj(x) =
∨

x∈Xtrain

∧
j∈{1,...,k}

(ρij(mijv̂j) ⇐⇒ v̂′j) (16)

where lj denotes the literal of relevant v̂′j representing the variable’s sign or “polarity” in the logic
rule (i.e., either vj or ¬vj). For example, given three variables v1, v2, v3, v4, DCR can predict the
endogenous variable v2 using the rule v2 ← (v1 ∧¬v3)∨ (¬v1 ∧ v3) which highlights the underlying
causal mechanism linking v1, v3, v4 to v2 (notice how DCR can also learn to remove irrelevant
variables such as v4).

Compositional generalization The training procedure of Causal CEMs is highly parallelizable
and modular as only direct connections need to be trained together (e.g., a→ b and b→ c), while the
model takes care of distant connections in an indirect way. For instance, the connection a→ b→ c
can be obtained as a composition of two different independent training procedures for a → b and
b→ c. As a result, it is trivial for a Causal CEM to make the causal graph grow even at test time (see
Figure 6). This can be done by composing two different graphs obtained by independent training
procedures, encoders, datasets, or data types. We note that this is not possible in standard CBMs,
which need to re-train the task predictor from scratch whenever new concepts or tasks are added to
the mix. Moreover, this modularity enables a form of out-of-distribution compositional generalization
as it creates new distant connections between variables that were never part of the same training
procedure (e.g., a and c in the previous example).

Figure 6: Compositional generalization in Causal CEMs: two different Causal CEMs architectures
are trained independently and then composed only at test time, thus creating a larger graph and
allowing out-of-distribution causal inference.
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B Experimental setup

B.1 Datasets

In our experiments we use three different datasets:

• Checkmark — The dataset consists of tabular data with three features, each ranging from
−1 to 1 (denoted as a, b, and c). The target variable d can be either 0 or 1. Each feature is
annotated with a concept that indicates whether it is positive or negative. The dataset also
incorporates causal relationships among the features. For example, feature c is defined as
the inverse of feature b. The target d is set to 1 when both features a and b are positive. This
data set is used to test our hypothesis in a straightforward and controlled setting.

• dSprites [46] — The dataset comprises images featuring one of three objects (square, heart)
in various positions and sizes. The defined concepts include: (1) object shape (square or
heart), (2) object size (small or large), (3) vertical position (top or bottom), (4) horizontal
position (left or right), (5) object colour (red or blue). Based on these, causal relationships
and a binary classification task are established: if the object is a heart on the right side, it is
large; if a heart is at the top of the image, it is red; the label is positive if the object is both
red and large.

• CelebA [47] — The CelebA dataset features celebrity images annotated with various
attributes, including lipstick presence, gender, facial shape, and hair type. Gender is used as
the classification label. This dataset is chosen for the presence of correlations and biases,
such as the association between wearing lipstick and being identified as female.

B.2 Baselines

We evaluated our approach against three established baselines:

• Black Box: This model employs a single predictor that processes the input to simultaneously
predict the task label and all relevant concepts. It lacks interpretability and does not
differentiate between the importance of task labels and concepts.

• Concept Bottleneck Model (CBM) [23]: This model first uses a concept predictor to infer
concepts from the initial input, followed by a task label prediction based on these concepts.
It is designed to be interpretable and treats concepts as significant informational to predict
the task label.

• Concept Embedding Model (CEM) [36]: Comprising n context encoders, one for each
concept, this model predicts each concept based on its respective context before predicting
the final task label. It treats concepts and task labels in the same way as CBM.

B.3 Experiments

In our experiments, we evaluate our approach by examining four key dimensions: (1) performance
accuracy, (ii) influence of ground-truth interventions, (iii) identification of causal structures, and (iv)
blocking for the influence of one variable on another.

To evaluate the first dimension, we conducted a comparative analysis of our approach (using both
a learned and a predefined graph) against Black Box, CBM and CEM. This was to determine if
graph-based inference would decrease model performance. For this assessment, we calculated the
model’s accuracy in predicting all concepts and the task. Typically, these metrics are calculated
independently; however, in our study, we treated tasks and concepts equivalently, considering them
collectively as labels.

In the second aspect, we evaluate our approach by comparing it against CBM and CEM in terms of
response to ground-truth interventions. Enhancing the impact of interventions in the Concept-Based
Model is crucial for improving the role of humans in the loop. In our experiments, we initially
perturbed the inputs to reduce label prediction accuracy, following methodologies established in
prior research [36]. Subsequently, we implemented interventions on the most inaccurately predicted
concepts in CEM and CBM. This intervention strategy is considered highly effective, as noted in [48].
For the Causal CEM, interventions began with concepts that have a higher number of descendant
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nodes in the model’s graph, aiming to maximise the intervention’s effectiveness. To assess this
dimension, we measured the change in accuracy for non-intervened labels before and after the
interventions on n concepts (Delta Label Accuracy).

In the third aspect, we visualise the DAG utilised during the inference stage by Casual CEM and
derive the corresponding logic equations. We generate Sum of Product logic rules from a table that
lists all possible combinations of input concept values alongside the most frequent prediction for each
combination derived from the training set, similarly to what done by [49]. It is crucial to note that
while these logic rules are general for the model decision-making process, exogenous information
may alter predictions for particular instances.

In the final dimension of our analysis, we compare Causal CEM, which operates on a specified
graph, against CBM and CEM in terms of their efficacy in mitigating a variable’s influence on the
task. Specifically, we perturb the prediction of a concept and then, following the graph structure
utilised by Causal CEM, we intervene with the ground truth label on all descendant nodes (blocking).
Consequently, in Causal CEM, all links between the altered concepts and the labels are deleted, a feat
unachievable in CBM and CEM. To assess this characteristic, we calculated the Residual Concept
Causal Effect, ratio of the Concept Causal Effect [44] post- and pre-application of the blocking
techniques. Ideally, this ratio should be zero, indicating that after blocking, the altered node’s value
no longer influences the outcome of the task.

B.4 Implementation details

Additional details To maximise the efficacy of interventions in Causal CEM, the second term of the
loss can be regularised to maximise the average Causal Concept Effect (CaCE) [44] as follows:

LCaCE =
1

n

n∑
i=0

|p(vi|do(vi,r = 1)− p(vi|do(vi,r = 0)|

Here, r represents a randomly chosen index for each sample, which is used to select one of the
concepts following Espinosa Zarlenga et al. [36]. This regularisation can be weighted using an
hyperparameter, λ3. Moreover, for all the experiments where the graph is learnt end-to-end, we
initialise the learnable adjacency matrix with the conditional entropy between each pair of values,
extracted from the training set.

Hyperparameters All baseline and proposed models were trained for varying epochs across different
datasets: 500 for Checkmark, 200 for dSprites, and 30 for CelebA. The optimal epoch for each was
determined based on label accuracy on the validation set. A uniform learning rate of 0.01 was applied
across all models and datasets. For the CBM and CEM models, both concept and task losses were
equally weighted at 1. This weighting scheme was also applied to the loss terms for endogenous
copies’ prediction, endogenous variables’ prediction (λ1), and graph priors (λ2). The weight assigned
to the loss terms in our models to maximize CaCE is 0.05. Additionally, γ was treated as a learnable
parameter, initialized at 0.1, and β was set to 1. All experiments were conducted using five different
seeds (1, 2, 3, 4, 5).

Code, licenses and hardware For our experiments, we implement all baselines and methods in
Python 3.9 and relied upon open-source libraries such as PyTorch 2.0 [50] (BSD license), Py-
torchLightning v2.1.2 (Apache Licence 2.0), Sklearn 1.2 [51] (BSD license). In addition, we used
Matplotlib [52] 3.7 (BSD license) to produce the plots shown in this paper. Two datasets we used
are freely available on the web with licenses: dSprites (Apache 2.0) and CelebA, which is released
for non-commercial use research purposes only. We also introduce the Checkmark dataset and we
described it in this section. We will publicly release the code with all the details used to reproduce all
the experiments under an MIT license. The experiments were performed on a device equipped with
an M3 Max and 36GB of RAM, without the use of a GPU. Approximately 40 hours of computational
time were utilized from the start of the project, whereas reproducing the experiments detailed here
requires only 2 hours.

C Additional results

In this section, we include all the experiments shown in Section 5 for the three datasets in more detail
and an ablation study on the value of λ3.
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C.1 Ground-Truth interventions

Figure 7 illustrates the performance comparison among Causal CEM (using both the provided and
learnt graphs), CBM, and CEM regarding the effects of interventions. Delta Label Accuracy, which
quantifies the change in label accuracy before and after interventions on a growing number of
concepts, is calculated solely for the concepts not directly intervened upon. In particular, Causal
CEM demonstrates superior performance when interventions involve fewer concepts. This superior
performance is attributed to the propagation of intervention effects through all descendant nodes
in Causal CEM, unlike CBM and CEM, where the impact is confined to the final task without
adjustments to other concepts. The most significant performance gain, approximately 15 percentage
points, is observed in CelebA after seven interventions. This effect is particularly pronounced in
scenarios with multiple concepts, such as in dSprites and CelebA. However, in simpler tasks with
fewer concepts, like Checkmark, the advantage offered by our method is lower. Furthermore, when
focusing solely on the effects of interventions on the task label, the causal graph utilised by Causal
CEM allows us to identify beforehand the specific subset of concepts influencing the task prediction.
This pre-identification significantly decreases the required number of interventions to achieve the
desired outcome. Figure 8 demonstrates that Causal CEM attains comparable improvements in task
performance but after interventions on only three or four concepts, in contrast to the ten and eleven
concepts required by CEM and CBM, respectively. The elevated standard error observed in Causal
CEM with the learnt graph is attributed to the variability of the graph structure, which significantly
influences the outcomes of interventions.

C.2 Causal structures

Figure 9 illustrates the adjacency matrices corresponding to the DAGs used by Causal CEM for
inference in three datasets. On the other hand, Tables 3, 4, and 5 present the logic rules derived from
the adjacency matrices depicted in the aforementioned figure. Notably, in the Checkmark dataset,
both configurations successfully identified the ground truth graph and the correct logic rules. In
the case of dSprites, the DAG identified through causal structural learning (GRaSP [40]) accurately
discovers the causal graph and associated logic rules. Although the end-to-end model accurately
identifies the correct relationships between concepts and tasks, it proposes alternative methods for
concept prediction. It is important to note that even though the model did not identify the correct
causal graph, the model was still capable of performing causal inference with the existing graph. In
the CelebA data set, where there is no ground truth for either the graph or logic rules, the findings by
GRaSP and the end-to-end model appear plausible and reveal biases inherent in the dataset, such as
the strong correlation between makeup use and gender or potential causal links like smiling and a
slightly open mouth. This scenario underscores the benefits of employing Causal CEM, particularly
in demonstrating how specific concepts are used to predict other concepts and tasks.

C.3 Ablation study

In Tables 6, 7, and 8, we present the outcomes of varying the hyperparameter λ3, which weights
the loss term designed to enhance the CaCE effect. The results indicate that optimising this loss
term contributes to improved CaCE scores, thereby augmenting the efficacy of the interventions.
Nonetheless, excessively high values of λ3 may lead to diminished model performance, as it tends to
prioritise boosting the CaCE score at the expense of accurate predictions.
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Figure 7: Impact of ground-truth interventions on concepts across three datasets. This figure
illustrates the variations in accuracy for non-intervened labels, comparing performance before and
after interventions on specific nodes.
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Figure 8: Impact on the task accuracy of ground-truth interventions performed on CelebA concepts.
Causal CEM+CD has received in input a causal graph, discovered with a causal structural learning
algorithm (GRaSP [40]), while Causal CEM learns it end-to-end.

Table 3: Logic rules extracted for the Checkmark dataset from Causal CEM+CD with a given DAG
and from Causal CEM with a learnt DAG. A term which refers to an exogenous variable is omitted
for simplicity.

METHOD CHECKMARK

Causal CEM

a← ϵ0
b← ϵ1
c←∼ b
d← a ∧ c

Causal CEM+CD

a← ϵ0
b← ϵ1
c←∼ b
d← a ∧ c
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Figure 9: Adjaciency matrices representing the DAG used by Causal CEM during inference on the
three datasets. On the left side, the matrices represent the DAG learnt end-to-end by the model, while
on the right the DAG discovered with GRaSP [40]. It provides a PAG starting from the training data.
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Table 4: Logic rules extracted for the Dsprites dataset from Causal CEM+CD with a given DAG and
from Causal CEM with a learnt DAG. A term which refers to an exogenous variable is omitted for
simplicity.

METHOD DSPRITES

Causal CEM

Shape← Size
Size← ϵ1

PosY← ϵ2
PosX← ϵ3
Color← Shape
Label← Size ∧ Color

Causal CEM+CD

Shape← ϵ0
Size← Shape ∧ PosX

PosY← ϵ2
PosX← ϵ3
Color← Shape ∧ PosY
Label← Size ∧ Color

Table 5: Logic rules extracted for the Celeba dataset from Causal CEM+CD with a given DAG and
from Causal CEM with a learnt DAG. A term which refers to an exogenous variable is omitted for
simplicity.

METHOD CELEBA

Causal CEM

Smiling (S)← ϵ0
Attractive (A)← Heavy_Make

Mouth_Slig (MS)← False
High_Cheek (HC)← ϵ3
Wearing_Li (WL)← Attractive

Heavy_Make (HM)← Smiling ∧ High_Cheek
Male←∼Wearing_Li∧ ∼ Heavy_Make

Wavy_Hair (WH)← (HC ∧WL∧ ∼ Male) ∨ (HC ∧WL∧ ∼ OF)
Big_Lips (BL)← Smiling ∧ High_Cheek∧ ∼ Male∧ ∼ Oval_Face

Oval_Face (OF)← False
Makeup (M)← False
Fem_Model← (M∧ ∼ S) ∨ (M∧ ∼ Male) ∨ (M ∧ HC∧ ∼WH) ∨ (WL ∧WH ∧ BL∧ ∼ S∧ ∼ HC)

Causal CEM+CD

Smiling← Mouth_Slig
Attractive←Wearing_Li

Mouth_Slig← ϵ2
High_Cheek← Smiling
Wearing_Li← ϵ4

Heavy_Make← (Attractive ∧Wearing_Li) ∨ (Wearing_Li ∧ Oval_Face)
Male←∼Wearing_Li∧ ∼ Heavy_Make

Wavy_Hair← Makeup ∨ (Attractive ∧Wearing_Li∧ ∼ Male)
Big_Lips← Makeup

Oval_Face← Smiling ∧ Attractive ∧Wearing_Li∧ ∼ Big_Lips
Makeup← False

Fem_Model← Makeup
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Table 6: Ablation study regarding λ3 on the Checkmark dataset.
λ3 Label Accuracy Average CaCE min CaCE max CaCE CaCE CaCE block

Black Box 90.15± 0.14
CBM 90.34± 0.55 4.09± 0.80 0.00± 0.00 9.45± 1.86 28.36± 5.58 27.79± 5.64
CEM 89.09± 1.98 1.75± 1.66 0.00± 0.00 4.45± 3.78 11.59± 12.76 11.89± 12.95

Causal CEM 0.05 88.24± 1.30 14.47± 2.86 0.00± 0.00 44.37± 5.58 16.15± 11.25 0.00± 0.00
Causal CEM + CE 0.05 89.43± 0.93 13.15± 2.31 0.00± 0.00 39.53± 3.62 20.99± 8.19 0.00± 0.00

Causal CEM 0.2 85.88± 3.31 11.64± 3.21 0.00± 0.00 37.55± 8.77 16.32± 15.36 0.00± 0.00
Causal CEM + CE 0.2 85.09± 2.78 16.39± 5.00 0.00± 0.00 39.69± 10.97 31.15± 19.48 0.00± 0.00

Causal CEM 0 87.86± 1.66 6.98± 2.95 0.00± 0.00 18.16± 8.29 7.39± 4.10 0.00± 0.00
Causal CEM + CE 0 87.04± 2.72 12.16± 2.92 0.00± 0.00 33.15± 9.97 14.52± 14.29 0.00± 0.00

Table 7: Ablation study regarding λ3 on the dSprites dataset.
λ3 Label Accuracy Average CaCE min CaCE max CaCE CaCE CaCE block

BlackBox 99.53± 0.05
CBM 99.55± 0.07 2.77± 0.30 0.00± 0.00 8.51± 1.03 0.64± 0.70 0.64± 0.70
CEM 99.48± 0.07 0.46± 0.29 0.00± 0.00 2.45± 1.67 2.43± 4.62 2.43± 4.62
CausalCEM 0.05 99.44± 0.11 17.53± 3.26 0.00± 0.00 44.47± 10.16 34.13± 19.46 0.00± 0.00
Causal CEM + CE 0.05 99.40± 0.15 12.85± 0.59 0.00± 0.00 27.72± 3.66 28.95± 13.50 0.00± 0.00
Causal CEM 0.2 98.80± 1.24 14.13± 3.39 0.00± 0.00 37.59± 14.20 17.52± 13.41 0.00± 0.00
Causal CEM + CE 0.2 99.30± 0.13 12.90± 0.51 0.00± 0.00 34.01± 6.99 16.84± 6.79 0.00± 0.00
Causal CEM 0 99.58± 0.12 6.89± 1.55 0.00± 0.00 18.51± 5.14 12.11± 13.01 0.00± 0.00
Causal CEM + CE 0 99.51± 0.05 5.67± 1.21 0.00± 0.00 12.41± 1.82 15.15± 4.10 0.00± 0.00

Table 8: Ablation study regarding λ3 on the CelebA dataset.
λ3 Label Accuracy Average CaCE min CaCE max CaCE CaCE CaCE block

Black Box 90.15± 1.30
CBM 79.00± 0.18 0.54± 0.03 0.00± 0.00 1.67± 0.15 5.58± 2.36 5.46± 2.13
CEM 79.17± 0.26 0.27± 0.12 0.00± 0.00 1.07± 0.56 1.00± 0.45 1.06± 0.50

Causal CEM 0.05 78.23± 0.45 2.17± 1.44 0.00± 0.00 8.18± 4.38 0.04± 0.07 0.00± 0.00
Causal CEM + CE 0.05 78.42± 0.42 5.48± 0.34 0.00± 0.00 24.17± 1.32 1.24± 0.62 0.00± 0.00

Causal CEM 0.2 77.49± 0.37 1.70± 0.98 0.00± 0.00 8.95± 4.86 0.00± 0.00 0.00± 0.00
Causal CEM + CE 0.2 78.08± 0.39 6.15± 0.31 0.00± 0.00 29.57± 1.03 0.82± 0.46 0.00± 0.00

Causal CEM 0 77.42± 1.09 2.85± 0.44 0.00± 0.00 13.06± 2.65 0.00± 0.00 0.00± 0.00
Causal CEM + CE 0 78.31± 0.36 4.64± 0.13 0.00± 0.00 18.31± 2.61 1.25± 0.68 0.00± 0.00
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